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New Gromacs Implementations for Multiscaling Space MD
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Among the methods used nowadays for studying the microscopic properties of polymers, proteins, membranes
and other bio-materials is the molecular dynamics. One of the widely used software  in molecular dynamics
is Gromacs developed at the University of Groningen. From a computational perspective, molecular dynamics
requires large computational power and an increased storage capacity. Different physical models were
recently defined for trying to reduce the complexity and to make more efficient the computational  it molecular
models. In this paper we present the Gromacs implementation of a new multiscaling MD model with a
space dependent multiscaling parameter and we discuss efficiency measurements.

Keywords: polymers, molecular dynamics, Gromacs, multiscaling modeling

* e-mail: n.goga@rug.nl; Tel: (+31)-64-3634338

Molecular Dynamics is a subdiscipline of Computational
Chemistry that focuses on the description and simulation
of chemical systems consisting of atoms and molecules.
The simulations are used as a kind of virtual experiments,
to complement laboratory experiments and to help
understanding the underlying chemical processes. Some
application areas are: studying the properties of plastic
materials [1-3, 9, 12-14], unraveling of protein structures
and the design of new materials and pharmaceutical drugs.

Molecular dynamics requires large computational
resources [15], typical runs taking a prolonged amount of
dedicated multi-processor cluster time, from months to
years. Thus, for a typical simulation, the time-scales on
which microscopic properties of the materials and cell
components are simulated and studied do not match the
natural time-scales, being much lower than them. In this
respect, sometimes, molecular dynamic simulations are
not always realistic in their predictions.

To counteract these restrictions, different physical
molecular models were recently developed and used. One
common modality nowadays is to use coarse-grained
atomistic models, in which an assembly of atoms is
replaced with one particle, usually placed in the center of
mass of the assembly of correspondent particles.  Although
this approximation enlarges the time-scales up to an order
of 20 and reduces the computational complexity, the
disadvantage is that some of the fine-detailed properties
are not observed when using coarse graining. One
possibility to improve the results obtained from such a
simulation is to combine the two models in one
multiscaling simulation.

In [6] we presented an implementation of a new
multiscaling simulation, where the multiscaling factor λ
was constant during the simulations. In this paper we
present the Gromacs implementation of a new
multiscaling method in which the multiscaling factor λ is
space-dependent, in the sense that it depends on the
position of the particle. This model is developed at the
University of Groningen.

Before going further we will say some words about the
software molecular dynamics package GROMACS.
GROMACS (GROningen MAchine for Chemical
Simulations1) is an extensive, well-established and free
software package used in Molecular Dynamics
simulations, and one of the first of its kind. It has been

developed in the early 1990s at Groningen University; the
last version GROMACS 4.0.3 contains a high degree of
parallelism. GROMACS is a product extensively used in the
academic medium (more than 150 universities and
research institutions) as well as in industry. It is also known
that it achieves a single-processor performance superior
to any other similar software [4]. We will detail our
implementation in a subsequent section about Gromacs.

One should note that we are not the first in trying to
define a multiscaling model that is space-dependent. There
are some other efforts in this area but each one of them
has different short-comings. The model developed by [10]
applies only to two-particle interactions and it is not
extended to three or four particle-type interactions. Other
proposed models [7] are pure theoretical, without a
presentation of any implementation of it.

This paper is organized as follows. The next sections
present briefly the theoretical ingredients of the model and
its Gromacs implementation. After that efficiency
measurements are discussed and at the end we draw the
conclusions.

Experimental part
Once we come to the physical model that underlines

space dependent multiscaling, one should note that it has
similarities with the approach in which the multiscaling
factor is constant, approach that was discussed to some
degree in [6]. Therefore we will try just to discuss the
elements that are specific to space-multiscaling and to
refer to the other paper for the common-parts.

Nevertheless one should note that the complexity of
space dependent multi scaling is larger than in the case of
a constant factor because when deriving the Newtonian
equations of motion from the Hamiltonian the multiscaling
factor should be taken into account in a larger proportion
than for the constant case.

Fig.1 A multiscaling space representation for FG and CG particles
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Before presenting the equations of motion, we will
explain in more detail the space-lambda model. This is
illustrated in the  figure 1. There is presented a typical case
of a multiscaling molecular dynamics. The middle region
is the one in which the fine-grained detail of interest are
computed. The fine grained portion is surrounded by two
coarse grained regions in which the computations are done
only at the coarse grain level. Between fine and coarse
grain parts there are two transitions regions in which the
particles start to change from fine grain to the coarse grain
nature. For modeling the transitions between the two
regions, a multiscaling space depending factor λ  is taken
into account. In the figure it can be seen that λ has the
value 0 in the CG region, 1 in the FG region and between 0
and 1 in the transitions regions.

Movement of the particles
As we did in [6], the movement of the particles is

represented in generalized coordinates that are given by
the following equations of motions:

      (1)

and the constraints

       (2)

where mik
FG represents the masses of the FG particles and

the number of constraints equals the number of CG
particles multiplied with 3 (the number of coordinates (x,
y, z)).

The equation of motions starts from the Hamiltonian.
Without losing of generality in what follows we will discuss
the situation of the interaction potentials between two
particles A and B. The interactions between 3 particles
(angle potentials) and four particles (dihedral potentials)
are solved in a similar way as presented for two particles.
The integration of energies is done in the following way:

     (3)

One should note that as compared with the case of
constant lambda [6] in these equations there is an extra
term present, which is the constant Const. We did not
explicit mention in [6], although it was also correct to put
it there, because when deriving the forces, Const and λ
being constant they were not showing up in the equations
of forces that were used further for the computation of the
movements. In the case of space multiscaling this constant
that corresponds to the difference in chemical potentials
cannot be ignored because it will show up further in the
equations of motions (see bellow). The disadvantage of
this constant is the fact that there should be para-
meterization work done for establishing the value of the
constant for different types of molecular systems. An
alternative approach could be to use a special potential in
the transitions zones, but this implies also parameterization.

The computation of the forces for CG and FG particles
are given by:

(4)

From (4) it results that the formulas of the force for particle
A (similar to particle B) are computed in the following way:

(5)

The equations of movement are solved using a Verlet
algorithm and constraint solving as discussed also in [6].

 Temperature coupling
As for constant lambda [6], the temperature is scaled

with the parameter λ  for the relative fine grained details
and kept constant at the given reference temperature for
the CG system. This way, in the CG regions the FG
temperature is 0 that assure also no relative velocities (the
FG details are frozen: the forces are also 0), in the FG region
the FG temperature gets the full value (full FG details) and
in the transitions regions the temperature is between 0
and full value, making the FG details to be introduced
smoothly into the system.

Implementation in Gromacs 4.0
The implementation of the multiscaling model

presented in the previous Section is based on the present
structure of the GROMACS 4 main MD simulator. We used
the existing topology and configuration of the simulated
system, and the parallel and scientific algorithms available
in GROMACS [8]. To implement our model, a well suited
approach would be to modify the related data structures
and functions for supporting a second topology and
configuration, making thus  possible the existence of fine-
grain and coarse-grain descriptions for the same molecular
system. However, the existing structure of the application
is not entirely modular and implementing our desired
algorithm would have imposed a substantial change in the
code, with extensive and complex modifications. This
would have interfered with constrains arisen from the
structure of the program and its data, and would have made
the model testing more difficult. Therefore, to allow
different configurations for the fine-grain and coarse-grain
subsystems, and to analyze the macroscopic properties of
both representations, we chose an implementation based
on different simulation spaces, leading to two
simultaneous simulations.  Also, to analyze the properties
of the simulated subsystems, we kept the finegrain to
coarsegrain mapping, together with the topology, for the
complete simulation box.

The main computational steps are described in the
figure above. In step (1) the finegrained coordinates and
velocities are constrained. Because the λ parameter is now
a function dependent of particle position, we must compute
it at each MD step, for every atom from the system. Keeping
in mind that a CG particle is composed of many FG atoms,
it is enough to compute the λ parameter only for the CG
particles. The surrounding FG atoms will have the same
value for λ . When using multiple processors for an MD
simulation, these computed values must be distributed to
the neighbor nodes due to implementation of coarse-
grained particles by using virtual interaction sites. This is
required by the force computation steps (5a) and (5b).

The force calculation for the space λ model must be
done in a different way than before, because the mixing
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parameter is position dependent. Usually, in the forces
computation both bonded and non-bonded interactions
bring their contributions. Following this model, we excluded
the non-bonded fine grain interactions from the coarse-
grain region when building the neighbour lists. For the
bonded interactions, we avoided the unnecessary
computations in the cases in which the forces will be zero.
For the computation of non-bonded interactions, the
modifications were added to the C version of the non-
bonded kernels, using the existing kernel generator (a tool
that is used to generate the C code for the dozens of kernels
existent in GROMACS). This generator was modified to
create separate versions of kernels for the space- λ force
computation.

After force calculation, the update of the system
configuration (coordinates, velocities, temperature
coupling) is done. For the space-λ  model, the temperature
is not scaled with a constant factor, but is a function
dependent on the atom coordinates. Therefore, we
modified the original update algorithm from step (8), to
correct the temperature scaling for the fine grain
subsystem.

To keep the simulated fine-grain system more stable,
the atoms from the FG topology were distributed into four
temperature groups according to their position, or the
character of the region in which they were included. These
groups must be rebuilt at each step, because the
temperature groups are related to spatial regions. In the
original implementation, the information related to system
topology (group, masses, etc.) is initialized and the number
of degrees of freedom is computed only once. However, in
our case, this number fluctuates, as atoms move between
the four regions. To correctly update the groups for all the
atoms from the system, they are computed at each step.
If parallelization is performed, this computation will be
made only for the home atoms. After that, the information
will be gathered and broadcasted, so each node will know
the groups for the entire system.

Results and discussions
In this section we will discuss the performance impact

and the scaling of our multiscale algorithm. The
measurements were performed on an IBM Blue Gene/L
architecture with all the simulations ran in the Co-processor
mode. We simulated a system of 750 HD molecules in a
box of 15x4x8 nm. The fine grain part of the system was

centrated and 3nm wide, with a transition buffer of 3nm
wide also.

The algorithm implies the existence of two simulation
spaces, with exchange of information between them, when
needed (e.g. forces, positions). The number of nodes
implied in the simulation of each box (fine grained and
coarse grained) can be parameterized by the user. For
choosing the appropriate distribution of processors, we have
taken in consideration the design of the coarse grain model
that we used.

Fig. 2. Performance function of the number of FG processors

Table 1
TIMINGS OBTAINED FOR SPACE-MULTISCALING WITH TWO

TOPOLOGIES

The results obtained regarding the correct distribution
and the scaling of the algorithm can be seen in table 1. In
this case, the most appropriate the fine-grain/coarse-grain
ratio is 6:1, meaning that for one processor that handles
the coarse grain simulation, six processors are allocated
for the fine grain part. However, even with a proper ratio,
having two simultaneous leads to an overhead imposed
by the global communication between the two simulations
and the two decomposition domains for the same box.

The performance of the algorithm is close to a linear
scaling at the beginning, but as the number of processors
increases, we can notice degradation due to the increased
volume of communicated data. But considering the
additional computation and communication steps required
by our multiscale simulation, this is quite expected. Also,
the domain decomposition algorithm from Gromacs does
not perform well in our particular case, due to the fact that
the distribution of particles between the processors is still
done for the original box of simulation.

Conclusions
We presented the implementation of the multiscale

space- λ in Gromacs 4, a well-known molecular dynamics
package. For analyzing better the properties of the
simulated systems and the correctness of our algorithm
we kept the fine grained particles for the entire box of
simulation. As a future work we plan to unify the two
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domains of simulation (fine grain and coarse-grain) into
one that can be split seamlessly on all the processors. In
this way we will avoid the overhead of communication
between the two spaces of simulation. Also, we are
considering modifying the original domain decomposition
algorithm for taking in consideration a better redistribution
of atoms between processors in our particular case. As a
large part of the box is at a coarse grain level, fewer
computations are being done and so, the load-balancing
between the processors is not fair in this moment.
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